October 23, 2024

Optik Bessel – Teknologi

Teknologi seputar lensa dan optik untuk segala keperluan

April 5, 2024 | admin

Bessel launches accelerator program for medtech startups

Bessel introduces accelerator program for medtech start-ups
cipbessel.com – Bessel and an Alabama technology center today said they are launching Hatch Powered by Bessel, an accelerator program for medtech start-ups.

Applications are currently open up for the 10-week program, which starts in Fairhope, Alabama, this summer.

The accelerator “combines the passion of start-up founders, the assistance of experienced clinical device experts, and the growing start-up community and financial investment in Alabama,” Bessel said in a press release. “… The program aims to gear up medtech start-ups to produce lasting and scalable innovations—breakthroughs that scale—and to give founders the entrepreneurial source community they need for long-lasting success.”

Start-ups selected for the program will receive a traveling stipend, access to occasions and workshops, and assistance on strategy, fundraising and implementation from lifescience industry business owners that will serve as coaches and advisors.

The start-ups may be offered financing for equity by Hatch Fairhope after the cohort wraps up with ending occasions in Fairhope, consisting of a demonstration day for the start-ups to pitch to financiers.

“There’s a skilled angel investor community that make effective clinical device financial investments and have the ability to follow their financial investments as the company progresses,” Bessel CEO Chris Danek informed MassDevice. “For instance, financiers in my start-up, AtheroMed, originated from this community.”

Hatch is a company center for tech-based business owners, moneyed by the Seaside Alabama Community University, the City of Fairhope, and the Baldwin Community + Financial Development Structure (BCEDF). The company helps its medtech start-ups access local scholastic health and wellness system USA Health and wellness Southern and the College of Alabama (UAB) Clinical Facility.

“Hatch take advantage of several local collaborations, and currently we can enter the medtech field through our collaboration with Bessel,” Hatch Experience Architect and Innovative Supervisor Keith Glines said in a press release. “Baldwin Region is such an innovation-rich community. The vibrant economic climate, job development, and access to considerable clinical and scholastic sources position Hatch Powered by Bessel for success.”

Share: Facebook Twitter Linkedin
April 5, 2024 | admin

BESSEL FUNCTIONS ARISE IN MANY PROBLEMS

cipbessel.com – BESSEL FUNCTIONS ARISE IN MANY PROBLEMS in physics possessing cylindrical symmetry, such as the vibrations of circular drumheads and the radial modes in optical fibers. They also provide us with another orthogonal set of basis functions.

Bessel functions have a long history and were named after Friedrich Wilhelm Bessel ( \(1784-1846\) )

The first occurrence of Bessel functions (zeroth order) was in the work of Daniel Bernoulli on heavy chains (1738). More general Bessel functions. were studied by Leonhard Euler in 1781 and in his study of the vibrating membrane in \(1764 .\) Joseph Fourier found them in the study of heat conduction in solid cylinders and Siméon Poisson (1781-1840) in heat conduction of spheres ( 1823 ).

The history of Bessel functions, did not just originate in the study of the wave and heat equations. These solutions originally came up in the study of the Kepler problem, describing planetary motion. According to \(\mathrm{G} . \mathrm{N}\). Watson in his Treatise on Bessel Functions, the formulation and solution of Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in 1770. Namely, the problem was to express the radial coordinate and what is called the eccentric anomaly, \(E\), as functions of time. Lagrange found expressions for the coefficients in the expansions of \(r\) and \(E\) in trigonometric functions of time. However, he only computed the first few coefficients. In 1816, Friedrich Wilhelm Bessel \((1784-1846)\) had shown that the coefficients in the expansion for \(r\) could be given an integral representation. In 1824 , he presented a thorough study of these functions, which are now called Bessel functions.

You might have seen Bessel functions in a course on differential equations as solutions of the differential equation

\[x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \nonumber \]

Solutions to this equation are obtained in the form of series expansions.

Namely, one seeks solutions of the form

\[y(x)=\sum_{j=0}^{\infty} a_{j} x^{j+n} \nonumber \]

by determining the form the coefficients must take. We will leave this for a homework exercise and simply report the results.

One solution of the differential equation is the Bessel function of the first kind of order \(p\), given as

\[y(x)=J_{p}(x)=\sum_{n=0}^{\infty} \dfrac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+p+1)}\left(\dfrac{x}{2}\right)^{2 n+p} \nonumber \]

Here \(\Gamma(x)\) s the Gamma function, satisfying \(\Gamma(x+1)=x \Gamma(x) .\) It is a generalization of the factorial and is discussed in the next section.

clipboard_e6fa12bc7a6c557a4e1bbe0e84bc8fd7c.png
Figure \(\PageIndex{1}\): Plots of the Bessel functions \(J_0(x)\), \(J_1(x)\), \(J_2(x)\), and \(J_3(x)\).

In Figure \(4.3\), we display the first few Bessel functions of the first kind of integer order. Note that these functions can be described as decaying oscillatory functions.

A second linearly independent solution is obtained for \(p\) not an integer as \(J_{-p}(x) .\) However, for \(p\) an integer, the \(\Gamma(n+p+1)\) factor leads to evaluations of the Gamma function at zero, or negative integers, when \(p\) is negative. Thus, the above series is not defined in these cases. Another method for obtaining a second linearly independent solution is through a linear combination of \(J_{p}(x)\) and \(J_{-p}(x)\) as

\[N_{p}(x)=Y_{p}(x)=\dfrac{\cos \pi p J_{p}(x)-J_{-p}(x)}{\sin \pi p} \nonumber \]

These functions are called the Neumann functions, or Bessel functions of the second kind of order \(p\).

clipboard_e0ae9bf83ebf2753a483e5964d82eca5d.png
Figure \(\PageIndex{2}\): Plots of the Neumann functions \(N_{0}(x), N_{1}(x), N_{2}(x)\), and \(N_{3}(x)\).

In Figure \(4.4\), we display the first few Bessel functions of the second kind of integer order. Note that these functions are also decaying oscillatory functions. However, they are singular at \(x=0\).

In many applications, one desires bounded solutions at \(x=0\). These functions do not satisfy this boundary condition. For example, one standard problem is to describe the oscillations of a circular drumhead. For this problem one solves the two dimensional wave equation using separation of variables in cylindrical coordinates. The radial equation leads to a Bessel equation. The Bessel function solutions describe the radial part of the solution and one does not expect a singular solution at the center of the drum. The amplitude of the oscillation must remain finite. Thus, only Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list at this time for Bessel functions of the first kind. The reader will have the opportunity to prove these for homework.

Derivative Identities. These identities follow directly from the manipulation of the series solution.

\[ \dfrac{d}{d x}\left[x^{p} J_{p}(x)\right] =x^{p} J_{p-1}(x) \nonumber \]

\[\dfrac{d}{d x}\left[x^{-p} J_{p}(x)\right] =-x^{-p} J_{p+1}(x) \nonumber \]

Recursion Formulae. The next identities follow from adding, or subtracting, the derivative identities.

\[J_{p-1}(x)+J_{p+1}(x)=\dfrac{2 p}{x} J_{p}(x) \nonumber \]

\[J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x) \nonumber \]

Orthogonality. One can recast the Bessel equation into an eigenvalue problem whose solutions form an orthogonal basis of functions on \(L_{x}^{2}(0, a)\). Using Sturm-Liouville Theory, one can show that

\[\int_{0}^{a} x J_{p}\left(j_{p n} \dfrac{x}{a}\right) J_{p}\left(j_{p m} \dfrac{x}{a}\right) d x=\dfrac{a^{2}}{2}\left[J_{p+1}\left(j_{p n}\right)\right]^{2} \delta_{n, m} \nonumber \]

where \(j_{p n}\) is the \(n\)th root of \(J_{p}(x), J_{p}\left(j_{p n}\right)=0, n=1,2, \ldots\) A list of some of these roots is provided in Table \(\PageIndex{1}.\)

Table \(\PageIndex{1}\): The zeros of Bessel Functions, \(J_{m}\left(j_{m n}\right)=0 .\)
\(n\) \(m=0\) \(m=1\) \(m=2\) \(m=3\) \(m=4\) \(m=5\)
1 \(2.405\) \(3.832\) \(5.136\) \(6.380\) \(7.588\) \(8.771\)
2 \(5.520\) \(7.016\) \(8.417\) \(9.761\) \(11.065\) \(12.339\)
3 \(8.654\) \(10.173\) \(11.620\) \(13.015\) \(14.373\) \(15.700\)
4 \(11.792\) \(13.324\) \(14.796\) \(16.223\) \(17.616\) \(18.980\)
5 \(14.931\) \(16.471\) \(17.960\) \(19.409\) \(20.827\) \(22.218\)
6 \(18.071\) \(19.616\) \(21.117\) \(22.583\) \(24.019\) \(25.430\)
7 \(21.212\) \(22.760\) \(24.270\) \(25.748\) \(27.199\) \(28.627\)
8 \(24.352\) \(25.904\) \(27.421\) \(28.908\) \(30.371\) \(31.812\)
9 \(27.493\) \(29.047\) \(30.569\) \(32.065\) \(33.537\) \(34.989\)

Generating Function.

\[e^{x\left(t-\dfrac{1}{t}\right) / 2}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}, \quad x>0, t \neq 0 \nonumber \]

Integral Representation.

\[J_{n}(x)=\dfrac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-n \theta) d \theta, \quad x>0, n \in Z \nonumber \]

Share: Facebook Twitter Linkedin
April 4, 2024 | admin

Sinar Bessel – Gaussian dalam chip susunan kisi yang didistribusikan secara konsentris

Sinar Bessel – Gaussian dalam chip susunan kisi yang didistribusikan secara konsentris

Cipbessel.com – Sinar Bessel yang dilengkapi dengan penyembuhan mandiri sangat penting untuk aplikasi penginderaan optik di lingkungan hamburan rintangan. Pembuatan balok Bessel on-chip yang terintegrasi mengungguli struktur konvensional dalam hal ukurannya yang kecil, kokoh, dan skema bebas penyelarasan. Namun, jarak propagasi maksimum (Z max ) yang disediakan oleh pendekatan yang ada tidak dapat mendukung penginderaan jarak jauh, sehingga membatasi potensi penerapannya. Dalam karya ini, kami mengusulkan chip fotonik silikon terintegrasi dengan struktur unik yang dilengkapi dengan susunan kisi yang terdistribusi secara konsentris untuk menghasilkan sinar Bessel-Gaussian dengan jarak propagasi yang jauh. Titik dengan profil fungsi Bessel diukur pada 10,24 m tanpa lensa optik, dan panjang gelombang operasi chip fotonik dapat dilakukan terus menerus dari 1500 hingga 1630 nm.

Untuk mendemonstrasikan fungsionalitas sinar Bessel-Gaussian yang dihasilkan, kami juga secara eksperimental mengukur kecepatan rotasi objek yang berputar melalui Efek Doppler rotasi dan jarak melalui prinsip jangkauan laser fase. Kesalahan maksimum kecepatan putaran dalam percobaan ini diukur sebesar 0,05%, yang menunjukkan kesalahan minimum dalam laporan saat ini. Dengan ukuran yang kompak, biaya rendah, dan potensi produksi massal dari proses terintegrasi, pendekatan kami menjanjikan untuk memungkinkan sinar Bessel-Gaussian dalam komunikasi optik luas dan aplikasi manipulasi mikro.

Perkenalan Sinar Bessel

Sinar Bessel, dengan kedalaman bidang yang signifikan dan karakteristik penyembuhan diri 1 , telah diterapkan dalam aplikasi yang luas, termasuk belitan kuantum 2 , pencitraan 3D bawah air 3 , manipulasi mikro optik 4 , mikroskop 5 , dan seterusnya. Ada berbagai cara untuk menghasilkan berkas Bessel, seperti celah melingkar dan lensa 6 , aksikon 7 , 8 , dan modulator cahaya spasial (SLM) 9 . Namun, metode ini rumit karena penggunaan elemen optik yang besar. Hal ini menghalangi penerapan sistem pembangkitan sinar Bessel dalam aplikasi praktis. Baru-baru ini, beberapa sistem kompak telah diusulkan untuk menghasilkan sinar Bessel dengan menggunakan sirkuit terpadu fotonik (PIC) 10 , permukaan meta 11 , 12 , pandu gelombang terintegrasi 13 , dan serat cetak 3D 14 . Metode berdasarkan PIC hanya menghasilkan sinar Bessel kuasi-1D. Sistem berbasis metasurface memerlukan penyelarasan yang akurat sehingga terjadi masalah ketidakstabilan. Teknik yang mengandalkan serat cetak 3D tidak dapat secara efektif memanipulasi polarisasi sinar datang. Selain itu, jarak rambat balok Bessel yang dihasilkan oleh teknologi di atas pendek (perbandingan terperinci diilustrasikan dalam Tabel Tambahan S1 dan Bagian Tambahan 1 ), yang jauh dari jarak balok Bessel yang dihitung secara teoritis tak terbatas. Ini secara signifikan membatasi penerapan sinar Bessel dalam skenario yang memerlukan jarak propagasi yang jauh, seperti penginderaan optik, komunikasi optik, dan sebagainya.

Sinar Bessel yang ditumpangkan oleh gelombang bidang menunjukkan sifat ideal dengan ekstensi tak terhingga dan energi tak terhingga. Namun, pembangkitan sinar Bessel secara praktis menyimpang dari sinar ideal karena panjang jarak rambat maksimum Z max 6 . Hal ini disebabkan tidak hanya oleh perpanjangan terbatas wavelet bidang tersebut tetapi juga oleh area superposisi pendek wavelet tersebut. Sinar Bessel – Gaussian 15 (BGb) adalah solusi persamaan gelombang paraksial dan dapat diperoleh dengan superposisi serangkaian sinar Gaussian. Ia membawa daya terbatas dan dapat diubah menjadi sinar Bessel melalui modulasi transversal. Yang terpenting, berkas Bessel dan BGb memiliki profil intensitas yang sama dalam bentuk fungsi Bessel pada jarak propagasi tertentu. Secara teori, BGb juga dapat merambat tanpa batas 16 . Namun, properti tak terhingga ini belum menarik banyak perhatian karena karakteristik propagasi BGb orde nol yang serupa dengan karakteristik propagasi berkas Gaussian biasa. Untuk BGb orde tinggi, karakteristik propagasi tak terbatas ini dapat memberikan manfaat signifikan pada studi berkas Bessel melalui teknologi kolimasi. Perbandingan terperinci dari kedua balok ini dan prinsip BGb tak terbatas dapat ditemukan

Share: Facebook Twitter Linkedin